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Abstract

In this paper, dynamics of a flexible hub–beam system is studied using a first-order approximation coupling (FOAC)

model and the assumed mode discretization method. Three kinds of damping are considered: structural damping of beam

material, air damping caused by large motion of the system, and damping located at hub bearing. Validity of the FOAC

model is verified by numerical simulations under two cases: (i) known large motion of system and (ii) unknown large

motion of system. Damping may significantly affect system dynamics and should not be neglected for high-speed large

motion of system or highly flexible beam.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

It is well known that flexible hub–beam system has many applications in many high-tech engineering area,
such as aerospace, aviation, and robotics. Studies on flexible hub–beam system can be classified into two
categories: modelling theory and control study. For the study of modelling theory, the traditional model
assumes small deformation in structural dynamics where axial and transverse displacements at any point in the
beam are uncoupled, and the dynamic model established based on this small deformation assumption is
referred as the zeroth-order approximation coupling (ZOAC) model. This model is widely used in dynamic
analysis of rigid–flexible coupling dynamic systems in past decades [1–6]. In 1987, Kane [3] investigated a
rotating flexible cantilever beam using the traditional ZOAC model, and showed that this model fails to
describe dynamic behaviour of the beam when the beam is in high rotation speed. Dynamic stiffening
phenomenon was first pointed out in Ref. [3]. Since then, most studies on rigid–flexible coupling dynamic
systems are focused on the investigation of dynamic stiffening, and many methodologies are developed to
capture dynamic stiffening term in dynamic systems [7–9]. The introduction of dynamic stiffening indicates
that there still exist big limitations on understanding of dynamics mechanism of rigid–flexible coupling
systems, and on accuracy of mathematical model established to describe dynamic behaviour of the systems.
Meanwhile, it also promotes extensive research on modelling of rigid–flexible coupling dynamic systems.
Recently, based on the theory of continuum medium mechanics and the theory of analysis dynamics, and with
consideration of the second-order coupling term of axial displacement caused by transverse displacement of
flexible beam, the first-order approximation coupling (FOAC) model is developed for flexible hub–beam
system [10–13]. Physical explanation to dynamic stiffening is suggested in Refs. [10–13] by using the FOAC
model. Dynamic stiffening is essentially a structural dynamic problem in non-inertial system, which results
from additional stiffness caused by the coupling of large rotation motion of rigid hub and small elastic
vibration of flexible beam [10–13]. In addition, existence of dynamic stiffening and validity of the FOAC
model are experimentally verified in Refs. [10–12].

For modelling of flexible hub–beam system, dynamic equation obtained by the Hamilton theory is a partial
differential and integral equations which are nonlinear, time-varying and strongly coupling. It is generally
impossible to get analytical solutions to these equations. For convenience in analysis, discretization of
equations is generally required. Finite element method (FEM) and assumed mode method (AMM) are often
used as discretization method of equations. For active control studies of flexible hub–beam system, degree of
freedom of dynamic model obtained by using FEM is usually very large and active controller requires system
states being used in control feedback, so dynamic model by FEM is not convenient for control design and
control implementation. Therefore, AMM is often used for control study. In fact for dynamics and control of
flexible hub–beam, FEM is usually available for dynamic analysis of the system and AMM is available for
control study.

On the other hand, damping exists inevitably in flexible hub–beam system. There exists not only structural
damping caused by beam material but also air damping by large motion of beam, and damping by rotation
bearing of hub as well. In existing studies for flexible hub–beam system, damping is often not taken into account
because modelling work will become very complicated. But for some cases damping has great effect on system
dynamics and may not be neglected. For example, when rotation speed of flexible hub–beam system is high and
flexibility of the beam is large, damping force caused by air will have great effect on system dynamics and should
be considered in modelling. In Ref. [10], structural damping, air damping, and damping of hub bearing are
considered in modelling for flexible hub–beam system, and validity of the FOAC model is experimentally
verified as well. However, discretization method adopted in Ref. [10] is FEM and AMM is not studied.

In this paper, modelling theory for flexible hub–beam system is studied by using AMM for discretization.
Structural damping, air damping and bearing damping of hub are considered in the modelling. Contributions
of the three damping to dynamic equation are formulated by using the Hamilton theory. The FOAC model
based on AMM is presented considering effect of damping. Dynamic model in non-inertial system is presented
too. The FOAC model based on AMM is validated and effect of damping on system dynamics is investigated
through numerical simulations.

This paper is organized as follows. Section 2 first briefly presents expression of the FOAC model for flexible
hub–beam system by the Hamilton theory and using AMM for discretization with and without damping.
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Dynamic model in non-inertial system is given in Section 3. Section 4 presents simulation and comparison
studies using the FOAC model and AMM. Two cases are considered: (i) known and (ii) unknown large
motion of system. Finally, a concluding remark is given in Section 5.

2. Dynamic model

2.1. The first-order approximation dynamic model

A hub–beam rotating in the horizontal plane is considered here as shown in Fig. 1, where the hub is a rigid
body and the beam is a flexible one. The global coordinate system O0�X0Y0 is the inertial system. The local
coordinate system O�XY is fixed to the beam. One end of the beam is fixed to the hub. The hub rotates in the
horizontal plane and the beam rotates about the hub. Large rotating motion of the hub forms a non-inertial
field and the beam vibrates in this field due to its elasticity and inertia. Effect of gravity of the hub and the
beam is neglected. Properties of the flexible beam are represented as follows: L is the length of beam,
E Young’s modulus of beam, I the area moment of inertia of beam cross-section, r the mass per unit volume,
and A the cross-section area. Radius of the hub is represented by rA and t is the external rotating torque acted
on the hub. The parameter y is the angular rotation of hub.

Fig. 2 illustrates deformation at an arbitrary point P0 of the beam, where x is the unreformed location of P0.
After deformation, P0 moves to the point P. The location vector of point P in the O0– X0Y0 system is
represented by rP and is given by

rP ¼ rA þHðr0 þ r1Þ (1)

where rA is the location vector of origin O of the O�XY system in the O0–X0Y0 system; and H is the direction
cosine matrix that is the O–XY system with respect to the O0–X0Y0 system, which is given by

H ¼
cos y � sin y

sin y cos y

� �
.

O

rA

O0

θ

Y

Y0

X

X0T

Fig. 1. Structural model of a hub–beam system.
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Fig. 2. Deformation description of a flexible cantilever beam.
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The vector r0 is the location vector of point P0 in the O�XY system and its coordinate is given by ½x; 0�T,
where the superscript T indicates the transpose of a vector or matrix, and r1 the deformation vector of P0 in
the O– XY system and its coordinate is represented by u1ðx; tÞ; u2ðx; tÞ

� �T
, which can be written as [10,13]

r1 ¼
u1ðx; tÞ

u2ðx; tÞ

" #
¼

w1ðx; tÞ þ wcðx; tÞ

w2ðx; tÞ

" #
¼

w1ðx; tÞ �
1

2

R x

0

qw2ðx; tÞ
qx

� �2

dx

w2ðx; tÞ

2
64

3
75 (2)

where w1(x, t) is the axial extension quantity and w2(x, t) is the transverse displacement. For a slender beam,
w2(x, t) is generally much larger than w1(x, t), thus it is reasonable to assume w2(x, t) ¼ u2(x, t). The parameter
wcðx; tÞ ¼ �1=2

R x

0
ðð@w2ðx; tÞÞ=ð@xÞÞ

2 dx is the second-order coupling term that is axial shrinking quantity
caused by w2(x, t). In the ZOAC model, small deformation assumption in structural dynamics is adopted, so
u1(x, t) ¼ w1(x, t) is assumed, i.e., wc(x, t) is not taken into account in the modelling. Because the object of
structural dynamics is for a structure with no rotation, neglecting the effect of wc(x, t) on system stiffness in the
modelling is reasonable. But for flexible hub–beam system with large rotation and when rotating motion is at
high speed, wc(x, t) will have significant effect on system performance and should be considered in the
modelling. This has been demonstrated by numerical simulation and experimental study in Refs. [10–13].

Kinetic energy of the system can be expressed as

T ¼
1

2
JH
_y
2
þ

1

2

Z L

0

rA_rTP_rP dx (3)

where JH is the rotary inertia of the hub. The parameter _rP can be obtained by taking the first derivative in
Eq. (1) as

_rP ¼ _rA þ _Hðr0 þ r1Þ þH_r1 (4)

Potential energy of the system can be written as

H ¼
1

2

Z L

0

EA½w01ðx; tÞ�
2 dxþ

1

2

Z L

0

EI ½w002ðx; tÞ�
2 dx (5)

where w01 and w002 represents the first and second partial derivative with respect to x, respectively.
From Eqs. (3) and (5), the variations dT and dH can be computed. The work done by the external load is

that by the rotational torque t, which can be expressed as

dW F ¼ tdy (6)

Using the Hamilton theory
R t2

t1
ðdT � dH þ dW F Þdt ¼ 0, the dynamics equation of system in partial

differential form can be obtained as [10,13]Z L

0

frA €w1 � 2rA_y _w2 � rA€yw2 � rA_y
2
ðrA þ xþ w1Þ � EAw001gdx ¼ 0 (7)

Z L

0

rA €w2 þ 2rA_y _w1 þ rA€yðrA þ xþ w1Þ � rA_y
2
w2 þ EIw002

�

þ rA
q
qx

w02

Z L

x

Bðx; tÞdx
� �	

dx ¼ 0 (8)

JH
€yþ

Z L

0

rAf€y½ðrA þ xÞ2 þ w2
1 þ w2

2 þ 2ðrA þ xÞðw1 þ wcÞ� þ ðrA þ xþ w1Þ €w2

� w2 €w1 þ 2_y½ðrA þ xÞð _w1 þ _wcÞ þ w1 _w1 þ w2 _w2�gdx ¼ t (9)

Boundary conditions of the beam are as follows:

w1ð0; tÞ ¼ 0; w2ð0; tÞ ¼ 0; w01ð0; tÞ ¼ 0; EIw002ðL; tÞ ¼ 0;

EAw01ðL; tÞ ¼ 0; EIw0002 ðL; tÞ ¼ 0

(
(10)
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where B(x, t) in Eq. (8) can be expressed as [10,13]

Bðx; tÞ ¼ �_y
2
ðrA þ xþ w1 þ wcÞ � 2_y _w2 þ €w1 þ €wc �

€yw2 (11)

2.2. The assumed mode discretization method

Eqs. (7)–(9) are the partial differential and integral equations that are nonlinear, time-varying and strongly
coupling. It is generally impossible to obtain analytical solutions to these equations. The idiomatic process
method is to discretize these equations, i.e., to change the system from an infinite degree-of-freedom system
into a finite degree-of-freedom system. Then an approximate solution to the original system is obtained from
the corresponding finite degree-of-freedom system. AMM and FEM are the two methods that are often used
as discretization methods for these equations. Because degree of freedom of dynamic model obtained using
FEM is usually very large, which is not convenient for control design, AMM is used in this paper
for discretization of Eqs. (7)–(9). In fact, for dynamics and control of rigid–flexible coupling systems,
FEM is often used for study of dynamic behaviour of the systems, while AMM is often used for active
control design.

The axial displacement w1 and the transverse displacement w2 of any point in the beam may be written as

w1ðx; tÞ ¼ U1ðxÞq1ðtÞ; w2ðx; tÞ ¼ U2ðxÞq2ðtÞ (12)

where both U1(x) and U2(x) are 1� n vectors, representing mode functions of axial and transverse vibrations
of the beam, respectively; and both q1(t) and q2(t) are n� 1 vectors, representing modal coordinates of axial
and transverse vibrations of the beam, respectively; which are given by

U1ðxÞ ¼ ½f
ð1Þ
1 ðxÞ;f

ð1Þ
2 ðxÞ; . . . ;f

ð1Þ
n ðxÞ�; q1ðtÞ ¼ ½q

ð1Þ
1 ðtÞ; q

ð1Þ
2 ðtÞ; . . . ; q

ð1Þ
n ðtÞ�

T (13)

U2ðxÞ ¼ ½f
ð2Þ
1 ðxÞ;f

ð2Þ
2 ðxÞ; . . . ;f

ð2Þ
n ðxÞ�; q2ðtÞ ¼ ½q

ð2Þ
1 ðtÞ; q

ð2Þ
2 ðtÞ; . . . ; q

ð2Þ
n ðtÞ�

T (14)

where U1(x) and U2(x) assume the mode functions of boundary-fixed cantilever beam in X and Y directions,
respectively. The elements of U1(x) and U2(x) are given by

fð1Þi ðxÞ ¼ sin
ð2i � 1Þp

2L
x; i ¼ 1; 2; . . . ; n (15)

fð2Þi ðxÞ ¼ cos bix� cosh bixþ giðsin bix� sinh bixÞ; i ¼ 1; 2; . . . ; n (16)

where

b1L ¼ 1:875; b2L ¼ 4:694; biL ¼ ði � 0:5Þp; iX3 (17)

gi ¼ �
cos biLþ cosh biL

sin biLþ sinh biL
(18)

From Eq. (12), the variations dw1 and dw2 can be written as

dw1 ¼ U1dq1; dw2 ¼ U2dq2 (19)

The variation of the second-order coupling term wc(x, t) in Eq. (2) is given by

dwc ¼ �dqT2SðxÞq2 (20)

where S(x) is coupling shape function which is an n� n vector, given by

SðxÞ ¼

Z x

0

U0T2 ðxÞU
0
2ðxÞdx (21)
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Discretizing Eqs. (7)–(9) and arranging the results, we have

JH þMyy Myq1 Myq2

Mq1y Mq1q1 0

Mq2y 0 Mq2q2

2
664

3
775

€y

€q1

€q2

2
664

3
775þ 2_y

0 0 0

0 0 Gq1q2

0 Gq2q1 0

2
664

3
775

_y

_q1

_q2

2
664

3
775

þ

0 0 0

0 Kq1q1 0

0 0 Kq2q2

2
664

3
775

y

q1

q2

2
664

3
775 ¼

Qy

Qq1

0

2
664

3
775þ

t

0

0

2
664
3
775 (22)

where Myy is the rotary inertia of the beam that is a scalar, and JH+Myy is the total rotary inertia of the
system; Mq1q1 ¼M1 and Mq2q2 ¼M2, where M1 and M2 are the n� n generalized elastic mass matrices of the
beam; Myq1 ¼MT

q1y
and Myq2 ¼MT

q2y
are 1� n vectors representing the inertia vectors caused by nonlinear

coupling between large rotating motion and elastic deformation; both Gq1q2 and Gq2q1 are n� n matrices
resulting from the gyroscopic effect; both Kq1q1 and Kq2q2 are n� n stiffness matrices; Qy is a scalar and Qq1

is
an n� 1 vector, both are the inertia force parameters. All the parameters in Eq. (22) are given as follows:

Myy ¼ J1 þ qT1M1q1 þ qT2M2q2 þ 2ðrAU01 þU11Þq1 � qT2 ðrAD0 þD1Þq2 (23)

Mq1y ¼MT
yq1
¼ �Rq2 (24)

Myq2 ¼MT
q2y
¼ rAU02 þU12 þ qT1R (25)

Mq1q1 ¼M1 ¼

Z L

0

rAUT
1U1 dx (26)

Mq2q2 ¼M2 ¼

Z L

0

rAUT
2U2 dx (27)

Gq1q2 ¼ �G
T
q2q1
¼ �R (28)

Kq1q1 ¼ K1 �
_y
2
M1 (29)

Kq2q2 ¼ K2 �
_y
2
M2 þ

_y
2
ðrAD0 þD1Þ (30)

Qy ¼ �2
_y½ðqT1M1 _q1 þ qT2M2 _q2Þ þ ðrAU01 þU11Þ_q1 � qT2 ðrAD0 þD1Þ_q2� (31)

Qq1
¼ _y

2
ðrAU

T
01 þUT

11Þ (32)

where K1 and K2 in Eqs. (29) and (30) are the n� n generalized elastic stiffness matrices of the beam. It should
be mentioned that the traditional ZOAC model is established based on small deformation assumption in
structural dynamics, and it assumes that axial and transverse displacements of the flexible beam are
uncoupled, so the obtained dynamics equation will not contain the underlined terms in Eqs. (23), (30) and
(31); and also S(x) ¼ 0. In Eq. (30), the underlined term is called the additional stiffness term [10,13]. It is the
additional stiffness term that is neglected in the traditional ZOAC model, which results in a wrong solution
when the beam is in high rotation speed [10,13].
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The constant parameters in Eqs. (23)–(32) are given as follows:

J1 ¼

Z L

0

rAðrA þ xÞ2 dx (33)

K1 ¼

Z L

0

EAU0T1U01 dx (34)

K2 ¼

Z L

0

EIU00T2U002 dx (35)

U0j ¼

Z L

0

rAUj dx; j ¼ 1; 2 (36)

U1j ¼

Z L

0

rAxUj dx; j ¼ 1; 2 (37)

D0 ¼

Z L

0

rASðxÞdx (38)

D1 ¼

Z L

0

rAxSðxÞdx (39)

R ¼

Z L

0

rAUT
1U2 dx (40)

where J1 is a scalar; U0j and U1j are both 1� n vectors; D0, D1 and R are all n� n matrices.
Eq. (22) may be written in the following matrix form:

M €Yþ 2_yG _Yþ KY ¼ Qþ F (41)

where Y is a (2n+1)� 1 vector; M, G and K are all (2n+1)� (2n+1) matrices; Q and F are both (2n+1)� 1
vectors; given by

Y ¼

y

q1

q2

2
664

3
775; M ¼

JH þMyy Myq1 Myq2

Mq1y Mq1q1 0

Mq2y 0 Mq2q2

2
664

3
775; G ¼

0 0 0

0 0 Gq1q2

0 Gq2q1 0

2
664

3
775; K ¼

0 0 0

0 Kq1q1 0

0 0 Kq2q2

2
664

3
775,

Q ¼

Qy

Qq1

0

2
664

3
775; F ¼

t

0

0

2
664
3
775 (42)

2.3. Effect of damping

Damping in flexible hub–beam system has important effect on dynamic characteristics, especially for the
case with high-speed large motion or large deformation of the beam. In past studies on flexible hub–beam
system, effect of damping is often not considered in the modelling. In this paper, this effect is taken into
account, and it will be demonstrated numerically in Section 4 that damping may have great effect on system
dynamics. Three kinds of damping adopted in Ref. [10] are considered herein: structural damping of beam
material, air damping caused by rotational motion of the beam, and damping located at the hub bearing
caused by rotational motion of the hub. Damping of beam material is assumed to be the viscous damping
similar to that in structural dynamics. For air damping, viscous damping and square damping are considered,
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respectively. Damping of the hub bearing is assumed to be viscous too. Contributions of damping to dynamic
equation are given blow.

Structural damping of the flexible beam may be determined by the mass coefficient method in structural
dynamics. In consideration of different damping of the beam in axial and transverse directions, structural
damping matrix of the beam may be written as

C1 ¼

0 0 0

0 a1M1 0

0 0 a2M2

2
64

3
75 (43)

where C1 is a (2n+1)� (2n+1) matrix; a1 and a2 are the damping coefficients of the beam in axial and
transverse directions, respectively. The parameters M1 and M2 are given in Eqs. (26) and (27).

When the beam moves in air, air resistance occurs and it causes the air damping force. As pointed out in
Refs. [10,14], two kinds of air damping force may be considered: the viscous damping force proportional to
instantaneous velocity and the square damping force proportional to the square of instantaneous velocity.
These two air damping forces are considered herein and their contributions to system dynamics are given
below.

For the viscous air damping, damping force is proportional to instantaneous velocity. Damping force
distributed along the beam may be written as [10,14]

~F1 ¼ �b1_~rP (44)

where b1 is the viscous damping coefficient. In matrix form, Eq. (44) becomes

F1 ¼ �b1½_rA þ _Hðr0 þ r1Þ þH_r1� (45)

When virtual displacement of the beam is produced, the virtual work dW1 done by the viscous damping force
F1 may be written as

dW 1 ¼ �b1

Z L

0

drTP½_rA þ _Hðr0 þ r1Þ þH_r1�dx (46)

Expanding Eq. (46) and then substituting the result into the expression of the Hamilton theoryR t2
t1
ðdT � dH þ dW F Þdt ¼ 0, we find that the contribution of the viscous air damping to dynamic equation

is a damping matrix, given by

C2 ¼
b1
rA

Myy Myq1 Myq2

Mq1y Mq1q1 0

Mq2y 0 Mq2q2

2
64

3
75 (47)

It is observed from Eq. (47) that, the damping matrix C2 has similar structure with the mass matrix in Eq. (22),
but the first element of C2 does not contain the rotary inertia of the hub, JH. All parameters in Eq. (47) are
shown in Eqs. (23)–(27).

If rotating velocity of the beam is high or deformation of the beam is large, damping force caused by the air
is generally taken to be proportional to the square of absolute instantaneous velocity, thus damping force
distributed along the beam may be written as [10,14]

~F2 ¼ �b2_~rP
_~rP



 

 (48)

where b2 is the square damping coefficient and _~rP



 

X0 is a scalar. In matrix form, Eq. (48) is written as

F2 ¼ �b2½_rA þ _Hðr0 þ r1Þ þH_r1� _rA þ _Hðr0 þ r1Þ þH_r1


 

 (49)

It is observed from Eq. (49) that the square damping force is complex in expression and it causes analytical
complexity to the solution of dynamic equation as well. One treatment to this problem is to make some
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predigestion for Eq. (49). For a slender beam with high rotation, effects of r1 and _r1 in the sign | � | in Eq. (49)
may reasonably be neglected [10], so Eq. (49) becomes

F2 � �b2½_rA þ _Hðr0 þ r1Þ þH_r1� _rA þ rH_0j j (50)

Similar to the deduction of damping matrix C2, contribution of the square damping force to dynamic equation
is also a damping matrix, given by

C3 ¼
b2 _y sign ð_yÞ

rA

C11 CT
21 CT

31

C21 C22 0

C31 0 C33

2
64

3
75 (51)

where C11 is a scalar, C21 and C31 are both n� 1 vectors, C22 and C33 are both n� n matrices, given by

C11 ¼

Z L

0

rAðrA þ xÞ3 dxþ qT1 rAM1 þ

Z L

0

rAxUT
1U1 dx

� �
q1 þ qT2 rAM2 þ

Z L

0

rAxUT
2U2 dx

� �
q2

þ 2 r2AU01 þ 2rAU11 þ

Z L

0

rAx2U1 dx

� �
q1 � qT2 r2AD0 þ 2rAD1 þ

Z L

0

rAx2SðxÞdx

� �
q2 (52)

C21 ¼ � rARþ

Z L

0

rAxUT
1U2 dx

� �
q2 (53)

C31 ¼ r2AU
T
02 þ 2rAU

T
12 þ

Z L

0

rAx2UT
2 dxþ rARþ

Z L

0

rAxUT
2U1 dx

� �
q1 (54)

C22 ¼ rAM1 þ

Z L

0

rAxUT
1U1 dx (55)

C33 ¼ rAM2 þ

Z L

0

rAxUT
2U2 dx (56)

where M1 and M2 are shown in Eqs. (26) and (27); U0j, U1j, D0, D1 and R are shown in Eqs. (36)–(40), j ¼ 1,2;
S(x) is shown in Eq. (21). The underlined term in Eq. (52) results from the consideration of coupling term of
deformation of the beam.

Synthetize the above damping and consider the viscous damping of hub bearing, the total damping matrix
of the system may be written as

Ct ¼

CH 0 0

0 a1M1 0

0 0 a2M2

2
64

3
75þ b1

rA

Myy Myq1 Myq2

Mq1y Mq1q1 0

Mq2y 0 Mq2q2

2
64

3
75þ b2 _y signð_yÞ

rA

C11 CT
21 CT

31

C21 C22 0

C31 0 C33

2
64

3
75 (57)

where CH is the viscous damping coefficient of the bearing of hub.
Adding the damping matrix given by Eq. (57) into Eq. (41), the dynamic equation considering damping may

be obtained as

M €Yþ ð2_yGþ CtÞ _Yþ KY ¼ Qþ F (58)

In Eqs. (41) and (58), we call the dynamic model with consideration of the underlined terms in Eqs. (23),
(30), (31) and (52) the FOAC model, and that without consideration of these underlined terms the ZOAC

model.
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3. Dynamic model in non-inertial system

For dynamic problem of flexible hub–beam system in non-inertial system, the law of large motion is usually
assumed known and need not be solved. Dynamic model of flexible hub–beam system in non-inertial system
can be obtained by neglecting the equation of large motion in Eq. (22).

3.1. Dynamic equation without damping

Neglecting the first row of equation in Eq. (22), the dynamic model of flexible hub–beam system in non-
inertial system without damping can be written as

M1 0

0 M2

" #
€q1
€q2

" #
þ 2_y

0 Gq1q2

Gq2q1 0

" #
_q1
_q2

" #
þ

Kq1q1 0

0 Kq2q2

" #
q1

q2

" #
¼

Qq1

0

� �
� €y

Mq1y

Mq2y

" #
(59)

All parameters in Eq. (59) are shown in Eqs. (24)–(30) and (32).

3.2. Dynamic equation with damping

If damping is considered, the dynamic equation of the system in non-inertial system may be written as

M1 0

0 M2

" #
€q1
€q2

" #
þ _y

Ct1 2Gq1q2

2Gq2q1 Ct2

" #
_q1
_q2

" #
þ

Kq1q1 0

0 Kq2q2

" #
q1

q2

" #
¼

Qq1

0

� �
þ

Q1

Q2

" #
þ

Q̂1

Q̂2

" #
(60)

where M1, M2, Gq1q2 , Gq2q1 , Kq1q1 , Kq2q2 , and Qq1
are shown in Eqs. (26)–(30) and (32). The parameters Ct1 and

Ct2 are n� n matrices; inertial forces Q1 and Q2 are n� 1 vectors; damping forces Q̂1 and Q̂2 are n� 1 vectors;
which are given by

Ct1 ¼ a1 þ
b1
rA

� �
M1 þ

b2 _y signð_yÞ
rA

C22 (61)

Ct2 ¼ a2 þ
b1
rA

� �
M2 þ

b2 _y signð_yÞ
rA

C33 (62)

Q1 ¼ �
€yMq1y (63)

Q2 ¼ �
€yMq2y (64)

Q̂1 ¼ �
b1 _y
rA

Mq1y þ
b2 _y

2
signð_yÞ
rA

C21

 !
(65)

Q̂2 ¼ �
b1 _y
rA

Mq2y þ
b2 _y

2
signð_yÞ
rA

C31

 !
(66)

where C21, C31, C22, and C33 are shown in Eqs. (53)–(56), respectively.
In Eqs. (59) and (60), we also call the dynamic model with the underlined term in Eq. (30) the FOAC model,

and that without the underlined term the ZOAC model.

4. Numerical simulations

In this section, validity of the proposed dynamic models is verified by numerical simulations. Two cases are
considered: (1) dynamics in non-inertial system with known large motion of system and (2) dynamics with
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unknown large motion of system. The two structural models adopted in Ref. [10] are used herein for
simulations. In Ref. [10], FEM is used as the discretization method for flexible hub–beam system.

4.1. Dynamics in a non-inertial system

Here, we consider dynamic characteristics in non-inertial system of the hub–beam system. The structural
model is shown in Fig. 1 where rA ¼ 0.55m. Properties of the flexible beam are taken as the same as those in
Ref. [10], and given as follows. The length of beam is L ¼ 0.9m, the thickness is 0.001m and the height is
0.0318m, the cross-sectional area of beam is A ¼ 3.18� 10�5m2 and the area moment of inertia of beam
cross-section is I ¼ 2.65� 10�12m4. The mass density of the beam is r ¼ 7.866� 103 kg/m3; and the modulus
of elasticity is E ¼ 2.01� 1011N/m2. The rotary inertia of hub is about JH ¼ 11.8 kgm2 and that of beam is
about 0.2 kgm2. Since the rotary inertia of hub is much larger than that of beam, vibration motion of beam
has very small effect on the rotation motion of hub. The law of large rotation motion of the system adopted in
Ref. [10] is used herein, given by

_y ¼
o0ð1� e�ð5t=T0ÞÞ=ð1� e�ð20=3ÞÞ; 0ptpT

o0; t4T

(
(67)

where T0 ¼ 60 s, T ¼ 80 s, and o0 ¼ 3.46 rad/s. The angular velocity of beam reaches o0 at T ¼ 80 s. The law
of large rotation motion is shown in Fig. 3.

Here, the structural damping coefficient is referred to Ref. [10], i.e., a1 ¼ a2 ¼ 0.011. Two kinds of air
damping may be caused by large motion of the beam: viscous damping and square damping. It was pointed
out in Refs. [10,14] that, in past experimental studies, no evidence shows that these two type of air damping
appear simultaneously in the system or there exists a critical rotation velocity which makes damping convert
from one form to another one. It was also indicated in Refs. [10,14] that the square air damping plays key role
for the case of high-speed motion. Therefore, the square air damping proportional to the square of
instantaneous velocity is considered in this simulation. The square damping coefficient b2 may be determined
according to the following established equation [10,14]:

b2 ¼
1
2rACdW s; Cd ¼ 5:63S1=3 (68)

where rA is the density of air, Cd the established coefficient, S the air-faced area, and Ws the width of air-faced
surface.

The value b2 ¼ 0.0353 is chosen as that in Ref. [10]. The viscous damping coefficient b1 is set to zero, i.e.,
b1 ¼ 0. In experimental studies of flexible hub–beam system in Ref. [10], an air bearing is installed in the hub
such that the hub–beam system may suspend in air. So the damping located at the air bearing is very small and
may be neglected, namely CH ¼ 0 is taken in Eq. (57). It should be mentioned herein that, validity of the
FOAC model is verified through experiment to the above structural model in Ref. [10], in which FEM is used
as discretization method and the above physical parameters are taken. For the structural model considered
A
ng

ul
ar

 V
el

oc
ity

 (
ra

d/
s)

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

Time (s)

Fig. 3. Time history of angular velocity of large motion of system.



ARTICLE IN PRESS

0 10 20 30 40 50 60 70 80 90

-0.14

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

Ti
p 

de
fle

ct
io

n 
(m

)

Time (s)

ZOAC model
FOAC model

experimental result

Fig. 5. Experimental and simulation results using FEM in Ref. [10].

0 10 20 30 40 50 60 70 80 90
-0.16
-0.14
-0.12
-0.1

-0.08
-0.06
-0.04
-0.02

0
0.02

Time (s)

D
is

pl
ac

em
en

t (
m

)

FOAC model ZOAC model

Fig. 4. Tip response of beam in the Y direction with damping.

D
is

pl
ac

em
en

t (
m

)

0 10 20 30 40 50 60 70 80 90
-0.03

-0.025
-0.02

-0.015
-0.01

-0.005
0

0.005
0.01

0.015
0.02

Time (s)

ZOAC modelFOAC model

Fig. 6. Tip response of beam in the Y direction without damping.

G.-P. Cai, C.W. Lim / Journal of Sound and Vibration 318 (2008) 1–1712
herein, all physical and structural parameters are referred to Ref. [10], except that AMM is used as
discretization method for dynamic equation of the system. For this condition, validity of AMM may be
verified by comparing simulation results of AMM with that of FEM. In the numerical simulations below, the
first two modes of the beam is used when using AMM.
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Under the large motion law given in Eq. (67), the tip responses of beam in Y direction by using the ZOAC
and FOAC models are displayed in Fig. 4, respectively, where the solid line is the result using the FOAC
model and the dot-dashed line the ZOAC model. It is observed from Fig. 4 that there exists big difference in
the two lines, especially for the time after 10 s. The offset quantity of the tip of beam in steady vibration phase
when using the FOAC model is about 7 cm, and that when using the ZOAC model is 14 cm which is twice of
the case of the FOAC model. The simulation and experimental results obtained in Ref. [10] are scanned and
displayed in Fig. 5 for comparison too, in which FEM is used for discretization of dynamic equation. It is
observed from the comparison of Figs. 4 and 5 that AMM may achieve almost the same result as FEM. This
indicates the validity of AMM presented in this paper. In the simulations for Figs. 4 and 5, the structural
damping and the square air damping are considered. If the two damping are neglected in dynamic equation,
namely a1 ¼ a2 ¼ b2 ¼ 0 are taken, the results are shown in Fig. 6 which shows a high-frequency vibration.
A comparison of Fig. 6 with Figs. 4 and 5 indicates that damping has great effect on system dynamics. Because
high-frequency vibration occurs in Fig. 6, so vibration amplitude of the beam in Fig. 6 without damping is
smaller than that in Fig. 4 with damping.

In past simulations and experimental studies, damping is usually not considered in the modelling, or
structural damping is considered with air damping neglected. When difference occurs between simulation and
experimental results, more attention is focused on numerical algorithm and model veracity to solve this
difference. Air damping is herein studied to demonstrate that it affects dynamic behaviour of the system
greatly in some cases. The result with only structural damping and neglecting air damping in the dynamic
equation is shown in Fig. 7. It again shows a high-frequency vibration. It is observed from Figs. 4 and 7 that
there exists significant difference in the results with and without air damping.

It is observed from the simulations above that there exists significant difference between the results using the
ZOAC and FOAC models. To further reveal the difference of these two dynamic models, the law of large
motion adopted in Refs. [3,15,16], cited by many studies, is used for the structural model. In the studies using
this law, all damping is often not taken into account. Therefore, damping is also not considered in the
simulations below. The law of large motion is given by

_y ¼
o0

T
t�

o0

2p
sin

2p
T

t

� �
; 0ptpT

o0; t4T

8<
: (69)

where T ¼ 15 s and o0 ¼ 3.46 rad/s. The beam reaches an angular velocity o0 at T ¼ 15 s and then rotates at a
constant angular velocity of o0. According to the law given in Eq. (69), the simulation results are displayed in
Fig. 8, where Fig. 8(b) is the magnified figure of Fig. 8(a) when 15ptp20. As observed in Fig. 8(a), the
maximum transverse displacement of beam using the traditional ZOAC model is larger than that of the FOAC
model in the accelerating phase of motion. It is also observed in Fig. 8(b) that the beam behaves with a
periodical vibration at the phase of steady motion. In this phase, the vibration amplitude of the ZOAC model
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is larger than that of the FOAC model, but the vibration frequency is otherwise. In the steady phase, the
fundamental frequency of tip vibration of beam in Y direction by the FOAC model is 1.163Hz, and that by
the ZOAC model is 0.841Hz. For the flexible cantilever beam without large motion, the fundamental
frequency is 1.006Hz. We observe that the transverse vibration frequency of the beam by the FOAC model is
increased in comparison with that without large motion and it shows a ‘‘dynamic stiffening’’ phenomenon. On
the contrary, the transverse vibration frequency by the ZOAC model is smaller than that without large motion
and it shows a ‘‘softening’’ phenomenon. The ‘‘softening’’ phenomenon is a result of the neglect of dynamic
stiffness term related with the coupling deformation of the beam.

4.2. Studies of rigid– flexible coupling dynamics

We observe from the simulations above that the presence of damping in the modelling is significant and
incorrect result may be obtained if damping is not considered. In the following simulation, the method above
is introduced to consider cases that large motion of the system is unknown.

In the studies above for dynamics in non-inertial system, the law of large motion of system is assumed
known. This case neglects the effect of elastic vibration of the beam in large motion of the system. For
practical rigid–flexible coupling dynamic systems, the law of external forces acted on the system is usually
known, but the law of large motion of the system is unknown, which is to be solved from the known
conditions. The large motion of the system causes elastic vibration of the flexible beam, which, in turn, affects
the large motion of the system. These two motions act on each other. The case of unknown large motion of
system is studied here. The radius of the hub is assumed to be rA ¼ 0.05m, and its rotary inertia is
JH ¼ 0.30 kgm2. The properties of the flexible beam are given as follows. The length is L ¼ 1.8m; the cross-
sectional area is A ¼ 2.5� 10�4m2; the area moment of inertia of beam cross-section is I ¼ 1.3021� 10�10m4;
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the mass density is r ¼ 2.766� 103 kg/m3; and the modulus of elasticity is E ¼ 6.90� 1010N/m2. The rotary
inertia of beam is about 1.46 kgm2, which is much larger than that of hub.

Here, we assume the following rotating torque is acted on the hub [10]:

tðtÞ ¼
t0 sin

2p
T

t

� �
; 0ptpT

0; t4T

8><
>: (70)
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where T ¼ 2 s. Eq. (70) indicates that the external torque acts on the hub according to the law of the first
equation in Eq. (70) when 0ptpT, and the external torque will be removed when t4T. The parameter t0 is
chosen to be t0 ¼ 1Nm. Fig. 9 shows the time history of the external torque given by Eq. (70). The damping
coefficients of the system are taken as the same in the last example, i.e., a1 ¼ a2 ¼ 0.011, b1 ¼ 0, b2 ¼ 0.0353,
and CH ¼ 0. In the following simulation, the first two modes of the beam are adopted again when using the
AMM.

In accordance with the law in Eq. (70), the tip responses of the beam in Y direction is displayed
in Fig. 10, where the solid line is the result of the FOAC model with damping, and the dashed line
without damping. Fig. 10(b) is the magnified figure of Fig. 10(a) when 2ptp20. We observe in Fig. 10
that the beam has constant-amplitude vibration in steady vibration phase for the case without damping,
and it behaves with a decayed vibration for the case with damping. Fig. 11 shows the time history of
angular displacement of the system. Fig. 11(b) is the magnified figure of Fig. 11(a) when 2ptp20. If
analytical method of multirigidbody dynamics is used, with J1

€y ¼ t, we can obtain the time history of
angular displacement of the system as a smooth curve with no undulation, and the flexible beam will stay at
y ¼ 20.751 after large rotating motion. But for the rigid–flexible coupling case without damping, from Figs. 10
and 11 we observe that the beam swings at y ¼ 20.751. For the case with damping, the swing motion of
hub shows also a decayed motion. Furthermore, it shows a motion trend contrary to the rotation motion of
the system.

In conclusion, we observe in Figs. 10 and 11 that damping has significant effect on system dynamics for the
rigid–flexible coupling of the hub–beam system.
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5. Concluding remark

In this paper, the dynamic characteristics of a flexible hub–beam system with damping effect are
investigated using the assumed mode discretization method. Two cases with known and unknown large
motion of the system are considered. Three kinds of damping are considered in the modelling: the structural
damping of the beam material, the air damping caused by the large motion of the system, and the damping of
the hub bearing. For air damping, the viscous damping proportional to the instantaneous velocity, and the
square damping proportional to the square of instantaneous velocity are considered. Simulation results
indicate that the FOAC model based on AMM is valid for describing the dynamic behaviour of the flexible
hub–beam system, whereas the traditional ZOAC model may result in incorrect solutions. When the large
motion of the system is in high speed or the flexibility of beam is large, damping in the system has significant
effect on system dynamics and should not be disregarded in the modelling.
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